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The reactions of diphenoyl peroxide with a series of electronically
excited state hydrocarbon reactant? was investigated by pulsed laser
spectrophotometry. It was found that the primary reaction between the
excited state and the peroxide is electron transfer to generate a radical
ion pair. The ions were detected by their characteristic absorption
spectra. The reaction kinetics were measured and used to verify the
generation of radical ion intermediates in the chemically initiated

electron-exchange luminescence (CIEEL) mechanism for the chemiluminescence

of organic peroxides.
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Our investigation of the chemiluminescence of diphenoyl peroxide (DPP) led
us to postulate the chemically initiated electron-exchange luminescence (CIEEL)
mechanism for thaf&and later, for numerous other peroxides.2 The key feature of
the CIEEL mechanism is the rate limiti;g single electron transfer to peroxide to
generate radical ion intermediates from the neutral, ground-state, closed-shell
reactants. These ions may undergo further chemical transformations before they
finally annihilate to form electronically excited states. The primary evidence
for the intermediacy of the radical ions in this sequence has been the correlation
of reaction kinetics with the redox properties of the reactants. We report herein
the results of our pulsed laser spectrophotometric3 study of the reaction of DPP
with several electronically excited electron donors (activators). Pulse excita-
tion enables us to identify the intermediate reaction products by their charac-
teristic absorption spectra and to measure simultaneously the rate of the reaction.
These experiments show unambiguously that radical ions are formed in the reaction of
DPP with the chemiluminescence activators, and that generation of caged ions precedes
the formation of electronically excited products in the chemiluminescence process.

The fluorescence of excited singlet pyrene (Py*l), in acetonitrile solvent, is

- quenched by DPP which forms eventually benzocoumarin (BC) in 60% yield as the only

volatile product detected. When Py*1

is generated by irradiation with a nitrogen
laser it is possible tc record the absorption spectrum of the transient products
that result from its reaction with the peroxide. The spectrum we observe 200 nsec
after the excitation of the pyrene, shown in Figure 1, is identical to thit which
has been attributed previously to pyrene radical cation (Py+).a The yield of

cage escaped Py‘ can be determined simply by measuring the optical density of

its characteristic absorption after all of the Py*l has reacted. Coumparison of
the yield of Py‘ from the several systems we investigated is particularly reveal-
ing.

Weller has shown that the quenching of Py*1 by p-dicyanobenzene (DCB) in

.

5
«cetonitrile occurs by electron transfer from Py*1 to generate Py*.” We have
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measured the yield of cage escaped Py+ in this system to be 67% of the Py*l that
reacts with DCB. The remaining 33% of the Py*1 must be converted to ground or !
triplet state pyrene, apparently, by in cage ion annihilation. When phthaloyl

peroxide6 (PP) reacts with Py*1 we have determined that the yield of cage escaped

Py+ is 48%. However, when DPP is the electron acceptor the yield of escaped Py+
is only 5%. It should be noted also that, in comparison to DPP, phthaloyl perox-
ide is not chemiluminescent.7 The CIEEL mechanism provides a convincing explana-

3 tion for the different behavior of phthaloyl and diphenoyl peroxides.

One electron reduction of DPP by Py*1 generates, after oxygen-oxygen bond
cleavage, diphenic acid radical anion. Rapid decarboxylation and ring closure
of this species produces a powerful reducing agent, benzocoumarin radical anion
(BC;), presumably within the same solvent cage as Py;. The radical ion pair,

: Py+ BC , has several energetically possible reaction channels available. Anni-

hilation within the cage can generate singlet,or triplet,excited pyrene,or pyrene
ground state.8 In competition with annihilation, diffusion into bulk solution
generates the low yield of escaped Py+ that we observe. On the other hand, one

electron reduction of PP generates phthalate radical anion. The struc-

¢ - ture of this species precludes its efficient rearrangement to a reducing agent. The

i cage annihilation reactions that consume the BCL Py+ pair from DPP do not occur with
é PP because electron trinsfer from phthalate radical anion to Py; is endergonic. As
? a result, diffusion competes more effectively with in cage reactions and we observe
: a relatively high yield of escaped Py's'.9 These reactions are summarized in Scheme 1.
Confirmation of the notion that reaction of Py*l with DPP can eventually
& regenerate Py*! comes from an analysis of the reaction kinetics and from measurement
% of the reaction quantum efficiency. Pyrene singlet reacts with PP with a
i diffusion limited rate constant of 1.67 + (0.01) x 10! M™! g”! and consumes
peroxide with a quantum efficiency of 0.81 ¢+ 0.05. In contrast, JPP reacts with
.r‘ Py*! with an apparent rate comstant of only 1.02 ¢+ (0.007) x 1010 M~ g~! put
with a quantum eff‘ciency of 1.56 t 0.15. These observations can be reconciled
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if, as we suggest in Scheme 1, Py*1 is, to some extent, regenerated from the cage
radical ion pair resulting from its reaction with DPP but not from its reaction
with PP. Indeed, the extent of Py*1 Fegeneration calculated from the quenching
results is in agreement with the efficiency of Py*1 production we have determined
for the chemiluminescent reaction of ground state pyrene with DPP. Of course,
the Py‘ BC; radical ion pair should be the same regardless of whether it is

formed from ground or excited state pyrene.

Finally, we have established a kinetic link between the chemiluminescence
of DPP and its reactions with electronically excited states. According to the
CIEEL mechanism, the predictor of the rate constant for reaction between a per-
oxide and an activator is the one electron oxidation potential of the activator.
If this is correct, then the rate constant for reaction of electronically excited,
as well as ground state, activators should be predicted equally well by their
oxidation potentials. The oxidation potential of Py*1 is -2.00 V (vs. SCE).10
Extrapolation of the ground state chemiluminescence data to the oxidation poten-
tial of Py*1 (Figure 2) predicts a bimolecular rate constant of 1.2 x 1016 H_l
s-l. Of course, this is much greater than the diffusion limit ,and the rate we

observe indicates,essentially, a diffusion controlled reaction.

The oxidation potential of triplet anthracene is calculated to be -0.47 V.
This activator is expected, thrrefore, to react with a rate constant slower than
the diffusion limit. We have measured the¢ rate of reaction of triplet anthracene
with DPP by monitoring the triplet-tri~let absorption spectrum following laser
excitation. The rate constant for this reaction was found to be 1.44 + (0.03) x
108 y! s ), The excellent correlation of this rate constant with the previously
determined ground state activator rate data is shown in Figure 2. This correla-

tion demands that tl » rate determining step f,r the ground and excited state reac-

tions of DPP with the various activators is the same, namely, electron transfer

from the activator to the peroxide.
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In conclusion, this investigation, and our other studies of the CIEEL mech-

anism, permit a fairly detailed sketch of the reaction coordinate. Electron trans-
fer from the activator (which may be in its ground, or an electronically excited

state) occurs,with a rate constant determined by the activator oxidation poten-
tial, to generate a pair of oppositely charged radical ions. These ions may dif-
fuse from the solvent cage or they may undergo further rapid chemical transforma-
tion. Annihilation of ion pairs which are sufficiently energetic form electron-
ically excited product. We have investigated this sequence of reactions primarily
for reagents capable of giving excited products. We suspect, however, that rate
limiting electron transfer may underlie the mechanism of many strictly ground
state reactions as well. We are continuing to investigate this, and other, aspects

of these reactions.
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Figure 1. Absorption spectrum of pyrene radical cation recorded 200 nsec after
excitation. The solvent is acetonitrile, pyrene concentration is

3.04 x 10°° M and DPP concentration 1s 2.4 x 1073 M.

Figure 2. Correlation of reaction kinetics for reaction of DPP with ground
and excited state activators. The data for the ground state

activators come from reference 1b.
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